29 research outputs found

    Reciclaje de baterías de litio para vehículos eléctricos

    Get PDF
    Para lograr el objetivo global de reducir las emisiones de gases de efecto invernadero y mejorar la calidad del aire en las ciudades, los vehículos eléctricos son cada vez más populares y el rápido crecimiento del mercado de vehículos eléctricos es imperativo. Como resultado, el consumo de baterías de litio aumentará y se generarán cada vez más residuos. Las baterías también se convertirán en un serio desafío para la gestión de residuos. Para proteger el medio ambiente y reducir los recursos que consumen las materias primas de litio, necesitamos reciclar y reutilizar las baterías de litio usadas. En este Trabajo Final de Máster se estudiará la situación actual de las baterías de litio, los recursos de litio disponibles, y cómo se podrá reutilizar el litio de baterías existentes y futuras.To achieve the global goal of reducing greenhouse gas emissions and improving air quality in cities, electric vehicles are becoming increasingly popular and the rapid growth of the electric vehicle market is imperative. As a result, the consumption of lithium batteries will also increase and more and more waste will be generated. Batteries will also become a serious waste management challenge.To protect the environment and reduce the resources consumed by lithium raw materials, we need to recycle and reuse used lithium batteries. In this Final Master's Thesis will study the current situation of lithium batteries, the available lithium resources, and how lithium from existing and future batteries can be reused

    An adaptive envelope analysis in a wireless sensor network for bearing fault diagnosis using fast kurtogram algorithm

    Get PDF
    This paper proposes a scheme to improve the performance of applying envelope analysis in a wireless sensor network for bearing fault diagnosis. The fast kurtogram is realized on the host computer for determining an optimum band-pass filter for the envelope analysis that is implemented on the wireless sensor node to extract the low frequency fault information. Therefore, the vibration signal can be monitored over the bandwidth limited wireless sensor network with both intelligence and real-time performance. Test results have proved that the diagnostic information for different bearing faults can be successfully extracted using the optimum band-pass filter

    Analyzing the Impact of Trucks on Traffic Flow Based on an Improved Cellular Automaton Model

    Get PDF
    This paper aims to analyze the impact of trucks on traffic flow and propose an improved cellular automaton model, which considers both the performance difference between passenger cars and trucks and the behaviour change of passenger cars under the impact of trucks. A questionnaire survey has been conducted to find out whether the impact of trucks exists and how the behaviour of passenger car drivers changes under the impact of trucks. The survey results confirm that the impact of trucks exists and indicate that passenger car drivers will enlarge the space gap, decelerate, and change lanes in advance when they are affected. Simulation results show that traffic volume is still affected by percentages of trucks in the congestion phase in the proposed model compared with traditional heterogeneous cellular automaton models. Traffic volume and speed decrease with the impact of trucks in the congestion phase. The impact of trucks can increase traffic congestion as it increases. However, it has different influences on the speed variance of passenger cars in different occupancies. In the proposed model, the relative relationship of the space gap between car-following-truck and car-following-car is changeable at a certain value of occupancy, which is related to the impact of trucks

    Temporal Modulation of Plasma Species in Atmospheric Dielectric Barrier Discharges

    Get PDF
    The atmospheric pressure dielectric barrier discharge in helium is a pulsed discharge in nature and the moment of maximum species densities is almost consistent with peak discharge current density. In this paper, a one-dimensional fluid model is used to investigate the temporal structure of plasma species in an atmospheric He-N2 dielectric barrier discharge (DBD). It is demonstrated that there exist microsecond delays of the moments of the maximum electron and ion densities from the peak of discharge current density. These time delays are caused by a competition between the electron impact and Penning ionizations, modulated by the N2 level in the plasma-forming gas. Besides, significant electron wall losses lead to the DBD being more positively charged and, with a distinct temporal separation in the peak electron and cation densities, the plasma is characterized with repetitive bursts of net positive charges. The temporal details of ionic and reactive plasma species may provide a new idea for some biological processes

    1D Fluid model of RF-Excited Cold Atmospheric Plasmas in Helium with Air Gas Impurities

    Get PDF
    Cold atmospheric plasmas (CAPs) in helium with air gas impurities (HeĂľAir for abbreviation) compromise the discharge stability of helium and the chemical reactivity of air, having great prospects for various applications such as plasma biomedicine. However, different kinds of reactive species are produced in HeĂľAir CAPs but only a few of them could be measured, and the plasma chemistry is so complex that the reported simulation models are simplified to a large extent, such as neglecting the space variation of CAPs by using a 0D model. As a result, much remains unknown for HeĂľAir CAPs, which hinders the development of their applications. For that reason, a 1D fluid model of HeĂľAir CAPs is developed in this paper, incorporating 48 chemical species and 118 volume reactions, which are extracted from a complex chemistry set by a reported 0D model, and then the density distribution of reactive species, the power dissipation pathways, and the chemistry pathways among the reactive species are obtained as a function of air concentration from 500 to 10 000 ppm. It is found that O and NO are the dominant reactive oxygen species (ROS) and reactive nitrogen species (RNS), respectively. Taking the ROS as a whole, it is mainly produced by the electron impact dissociation and excitation of O2; taking the RNS as a whole, it is mainly produced by the oxidation of atomic nitrogen [N and N(2D)], and NO is the precursor for all the other RNS

    Cold Atmospheric-Pressure Plasma Caused Protein Damage in Methicillin-Resistant \u3ci\u3eStaphylococcus aureus\u3c/i\u3e Cells in Biofilms

    Get PDF
    Biofilms formed by multidrug-resistant bacteria are a major cause of hospital-acquired infections. Cold atmospheric-pressure plasma (CAP) is attractive for sterilization, especially to disrupt biofilms formed by multidrug-resistant bacteria. However, the underlying molecular mechanism is not clear. In this study, CAP effectively reduced the living cells in the biofilms formed by methicillin-resistant Staphylococcus aureus, and 6 min treatment with CAP reduced the S. aureus cells in biofilms by 3.5 log10. The treatment with CAP caused the polymerization of SaFtsZ and SaClpP proteins in the S. aureus cells of the biofilms. In vitro analysis demonstrated that recombinant SaFtsZ lost its self-assembly capability, and recombinant SaClpP lost its peptidase activity after 2 min of treatment with CAP. Mass spectrometry showed oxidative modifications of a cluster of peaks differing by 16 Da, 31 Da, 32 Da, 47 Da, 48 Da, 62 Da, and 78 Da, induced by reactive species of CAP. It is speculated that the oxidative damage to proteins in S. aureus cells was induced by CAP, which contributed to the reduction of biofilms. This study elucidates the biological effect of CAP on the proteins in bacterial cells of biofilms and provides a basis for the application of CAP in the disinfection of biofilms

    Low-Temperature Gas Plasma Combined with Antibiotics for the Reduction of Methicillin-Resistant \u3ci\u3eStaphylococcus aureus\u3c/i\u3e Biofilm Both in Vitro and in Vivo

    Get PDF
    Biofilm infections in wounds seriously delay the healing process, and methicillin-resistant Staphylococcus aureus is a major cause of wound infections. In addition to inactivating micro-organisms, low-temperature gas plasma can restore the sensitivity of pathogenic microbes to antibiotics. However, the combined treatment has not been applied to infectious diseases. In this study, low-temperature gas plasma treatment promoted the effects of different antibiotics on the reduction of S. aureus biofilms in vitro. Low-temperature gas plasma combined with rifampicin also effectively reduced the S. aureus cells in biofilms in the murine wound infection model. The blood and histochemical analysis demonstrated the biosafety of the combined treatment. Our findings demonstrated that low-temperature gas plasma combined with antibiotics is a promising therapeutic strategy for wound infections

    Modeling and Characteristic Analysis of Wireless Ultrasonic Vibration Energy Transmission Channels through Planar and Curved Metal Barriers

    No full text
    Wireless ultrasonic vibration energy transmission systems through metal barriers based on piezoelectric transducers have drawn a lot of focus due to the advantage of nonpenetration of the barriers, thus maintaining the integrity of sealed structures. It is meaningful to investigate appropriate modeling methods and to characterize such wireless ultrasonic energy transmission channels with different geometric shapes. In this paper, equivalent circuit modeling and finite element modeling methods are applied to the planar metal barrier channel, and a 3-dimensional finite element modeling method is applied to the cylindrical metallic barrier channel. Meanwhile, the experimental setup is established and measurements are carried out to validate the effectiveness of the corresponding modeling methods. The results show that Leach’s equivalent circuit modeling method and finite element modeling method are nearly similarly effective in characterizing the planar metal barrier channel. But for a cylindrical metal barrier, only the three-dimensional finite element modeling method is effective. Furthermore, we found that, for the planar barrier, the effect of standing waves on the efficiency of wireless energy transmission is dominated. But for the curved barrier, only the resonant phenomenon of the piezoelectric transducer exists

    A Real-Time FPGA Implementation of Infrared and Visible Image Fusion Using Guided Filter and Saliency Detection

    No full text
    Taking advantage of the functional complementarity between infrared and visible light sensors imaging, pixel-level real-time image fusion based on infrared and visible light images of different resolutions is a promising strategy for visual enhancement, which has demonstrated tremendous potential for autonomous driving, military reconnaissance, video surveillance, etc. Great progress has been made in this field in recent years, but the fusion speed and quality of visual enhancement are still not satisfactory. Herein, we propose a multi-scale FPGA-based image fusion technology with substantially enhanced visual enhancement capability and fusion speed. Specifically, the source images are first decomposed into three distinct layers using guided filter and saliency detection, which are the detail layer, saliency layer and background layer. Fusion weight map of the saliency layer is subsequently constructed using attention mechanism. Afterwards weight fusion strategy is used for saliency layer fusion and detail layer fusion, while weight average fusion strategy is used for the background layer fusion, followed by the incorporation of image enhancement technology to improve the fused image contrast. Finally, high-level synthesis tool is used to design the hardware circuit. The method in the present study is thoroughly tested on XCZU15EG board, which could not only effectively improve the image enhancement capability in glare and smoke environments, but also achieve fast real-time image fusion with 55FPS for infrared and visible images with a resolution of 640 × 470
    corecore